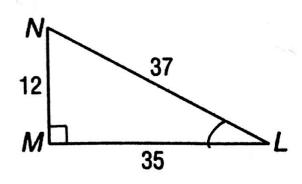
SOH CAH TOA

KeyConcept

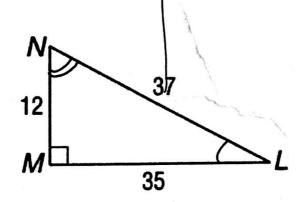

Words If $\triangle ABC$ is a right triangle with acute $\angle A$, then the sine of $\angle A$ (written sin A) is the ratio of the length of the leg opposite $\angle A$ (opp) to the length of the hypotenuse (hyp).	Symbols	
	$\sin A = \frac{\text{opp}}{\text{hyp}} \text{ or } \frac{s}{c}$ $\sin B = \frac{\text{opp}}{\text{hyp}} \text{ or } \frac{b}{c}$	A
If $\triangle ABC$ is a right triangle with acute $\angle A$, then the cosine of $\angle A$ (written $\cos A$) is the ratio of the length of the leg adjacent $\angle A$ (adj) to the length of the hypotenuse (hyp).	$\cos A = \frac{\text{adj}}{\text{hyp}} \text{ or } \frac{b}{c}$ $\cos B = \frac{\text{adj}}{\text{hyp}} \text{ or } \frac{a}{c}$	6
If $\triangle ABC$ is a right triangle with acute $\angle A$, then the tangent of $\angle A$ (written tan A) is the ratio of the length of the leg opposite $\angle A$ (opp) to the length of the leg adjacent $\angle A$ (adj).	$\tan A = \frac{\text{opp}}{\text{adj}} \text{ or } \frac{a}{b}$ $\tan B = \frac{\text{opp}}{\text{adj}} \text{ or } \frac{b}{a}$	c a B

EXAMPLE 1

Find Sine, Cosine, and Tangent Ratios

A. Express sin L as a fraction and as a decimal to the nearest hundredth.

$$\sin(L^{\circ}) = \frac{opp}{hyp} = \frac{12}{37} = 0.32$$


B. Express cos L as a fraction and as a decimal to the nearest hundredth.

$$\cos(L^{\circ}) = \frac{adj}{hyp} = \frac{35}{37} = 0.95$$

C. Express tan L as a fraction and as a decimal to the nearest hundredth.

D. Express sin N as a fraction and as a decimal to the nearest hundredth.

$$sin(N^2) = \frac{35}{37} = 0.95$$

E. Express cos N as a fraction and as a decimal to the nearest hundredth.

$$\cos(N^{\circ}) = \frac{adj}{hyp} = \frac{12}{37} = 0.32$$

F. Express tan N as a fraction and as a decimal to the nearest hundredth.

$$tan(N^{\circ}) = \frac{opp}{adj}$$

= $\frac{35}{12} = 2.92$

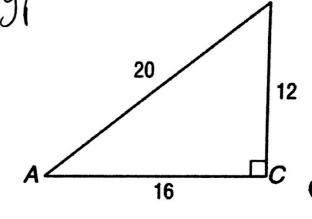
Check Your Progress

A. Find sin A.

$$\frac{O}{H} = \frac{3}{5}$$

B. Find cos A.

C. Find tan A.

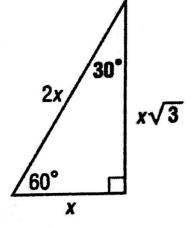

D. Find sin B.

E. Find cos *B.*

F. Find tan B.

$$\frac{0}{A} = \frac{4}{3}$$

$$opp = 3 = 12$$
 $adj = 4 = 16$
 $adj = 5 = 20$


EXAMPLE 2

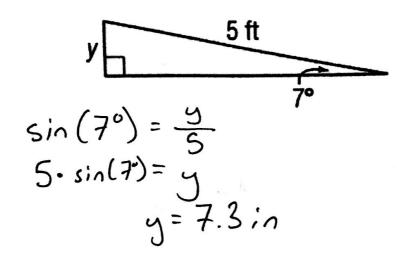
Use Special Right Triangles to Find Trigonometric Ratios

Use a special right triangle to express the cosine of 60° as a fraction and as a decimal to the nearest

hundredth.

$$\cos(60^\circ) = \frac{1}{2x} = \frac{1}{2} = 0.5$$

EXAMPLE 2



Use a special right triangle to express the tangent of 60° as a fraction and as a decimal to the nearest hundredth.

$$\tan(60^\circ) = \frac{x\sqrt{3}}{x} = \sqrt{3} = 1.73$$

Real-World Example 3 Estimate Measures Using **Trigonometry**

EXERCISING A fitness trainer sets the incline on a treadmill to 7°. The walking surface is 5 feet long. Approximately how many inches did the trainer raise the end of the treadmill from the floor?

CONSTRUCTION The bottom of a handicap ramp is 15 feet from the entrance of a building. If the angle of the ramp is about 4.8°, about how high does the ramp rise off the ground to the nearest inch?

$$tan(4.8^{\circ}) = \frac{x}{15}$$

15 · $tan(4.8^{\circ}) = x$
 $x = 15$ in

KeyConcept Inverse Trigonometric Ratios

If $\angle A$ is an acute angle and the sine of A is x, then the

inverse sine of x is the measure of $\angle A$

If $\sin A = x$, then $\sin^{-1} x = m \angle A$. **Symbols**

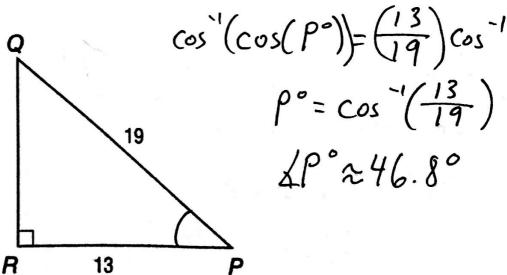
If $\angle A$ is an acute angle and the cosine of A is x, then the Words

inverse cosine of x is the measure of $\angle A$.

If $\cos A = x$, then $\cos^{-1} x = m \angle A$ **Symbols**

If $\angle A$ is an acute angle and the tangent of A is x, then the Words

inverse tangent of x is the measure of $\angle A$.

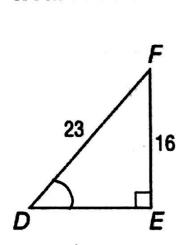

If $\tan A = x$, then $\tan^{-1} x = m \angle A$. **Symbols**

ton (adj) = A

Find Angle Measures Using Inverse **Trigonometric Ratios**

Use a calculator to find the measure of $\angle P$ to the

nearest tenth.



EXAMPLE 4

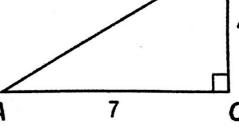
Check Your Progress

Use a calculator to find the measure of $\angle D$ to the nearest tenth.

$$sin(D^{\circ}) = \frac{16}{23}$$

 $D^{\circ} = sin^{-1}(\frac{16}{23})$
 $\approx 44.1^{\circ}$

44.1 = A


EXAMPLE 5 Solve a Right Triangle

Solve the right triangle. Round side measures to the nearest hundredth and angle measures to the nearest degree.

В